Mark scheme – Introducing Chemical Reactions (H)

Question		on	Answer/Indicative content	Marks	Guidance
1			В√	1 (AO2.1)	
			Total	1	
2			D√	1 (AO2.2)	
			Total	1	
3			В√	1 (AO2.2)	
			Total	1	
4			D√	1 (AO1.1)	
			Total	1	
5			В√	1 (AO2.1)	
			Total	1	
6			D√	1(AO2.2)	
			Total	1	
7			C √	1(AO2.2)	Examiner's Comments Misconception B was a very common misconception in this question, when candidates calculated the number of oxygen <u>molecules</u> rather than the number of oxygen <u>atoms</u> .
			Total	1	
8	а	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.00125 / 1.25×10 ⁻³ award 2 marks Moles = $\frac{\text{volume}}{24} / \frac{0.030}{24} / \frac{30}{24} \checkmark$ = 0.00125 / 1.25×10 ⁻³ \checkmark	2 (AO2.2)	ALLOW 1 mark only for 30 ÷ 24 or 0.030 ÷ 24,000, correctly calculated
		ii	0.0025 / 2.5 × 10 ⁻³ (g) √	1 (AO2.2)	unit not needed ALLOW ECF from (i) ie 2 x answer from (i)
	b		Moles of chromium = $\frac{10.40}{52.0} = 0.2 \checkmark$	3 (AO2.2)	ALLOW other methods of calculation

			Moles of nickel = $\frac{17.61}{58.7} = 0.3 \checkmark$ Idea that ratio is 2:3 / ratio isn't 1:1 so equation 2 \checkmark		eg 10.40g of chromium forms $\frac{10.40}{52.0} \times 58.7$ $= 11.74g \text{ nickel}$ $\frac{11.74}{3} \times 2 = 17.61g$ So, equation 2 ALLOW answers that show equation 1 is not correct Third marking point is dependent on correct mathematical reasoning
			Total	6	
9			2Na + 2H ₂ O → 2NaOH + H ₂ Formulae \checkmark Balancing \checkmark	2 (AO1.1) (AO2.1)	ALLOW any correct multiple, including fractions DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae eg 2Na + $2H_2O \rightarrow 2NaoH + H2$
			Total	2	
10		i	Na ₂ O (s) + H ₂ O (I) \rightarrow 2 NaOH (aq) Formulae \checkmark Balancing \checkmark State symbols \checkmark	3 (AO2.1) (AO1.2) (AO2.1)	ALLOW any correct multiple, including fractions ALLOW = OR ⇒ instead of → DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae e.g. NAO + H ₂ O → 2NaOH State symbols mark is independent of formulae & balancing marks
		ii	Hydroxide / OH– ions]	1 (AO1.1)	
		iii	Sodium sulfate√	1 (AO2.1)	ALLOW Na ₂ SO ₄ IGNORE incorrect formulae if correct name is given
		iv	FIRST CHECK ANSWER ON ANSWER LINE If answer = 100 award 2 marks pH increased by 2 concentration decreases by a factor of 10 × 10 √ 100 √	2 (AO2.2) 7	ALLOW for 1 mark pH increase by 1, so concentration decreased by a factor of 10
				1	
11	а	i	x- axis: mass of copper carbonate (g) AND y-axis: mass of copper oxide(g) √	4 (AO4 × 2.2)	ALLOW correct formulae, le CuCO ₃ and CuO ALLOW just copper carbonate (g) AND

		ii	Appropriate scale \checkmark All points plotted correctly \checkmark Line of best fit through the points \checkmark 3.8(0) (g) \checkmark	(AO1.2) 1 (AO3.1a)	copper oxide(g) ALLOW ± ½ square ALLOW line that starts at (1, 0.7) and does not go through (0,0) ALLOW correctly drawn line of best fit through incorrectly drawn points; this may be a curve ALLOW ± ½ square ALLOW ECF from graph
		iii	Idea that carbon dioxide (gas) escapes \checkmark	1 AO3.2b)	escapes, but DO NOT ALLOW incorrectly named gas
	b		FIRST CHECK ANSWER ON ANSWER LINE If answer = 373 (tonnes) award 4 marks $M_r \text{ CaCO}_3 = 100.1 \text{ and } M_r \text{ CaO} = 56.1 \checkmark$ 209 g of calcium oxide = $\frac{100.1}{56.1} \times 209$ = 372.9215686 (g) \checkmark = 373 (g) (3 significant figures) \checkmark	4 (AO3 × 2.2) (AO1.2)	Need both relative formula masses for 1 mark DO NOT ALLOW 100 or 56 ALLOW ECF from incorrect RFMs ALLOW ECF
			Total	10	
12			FIRST CHECK ANSWER ON ANSWER LINE If answer = 297 award 3 marks Relative formula mass of MgCO ₃ = 24.3 + 12 + 16 × 3 = 84.3 \checkmark Number of moles = 25 × 1000 = 296.5599051 = 297 \checkmark (to 3 sig fig)	3 (AO2.2 × 2) (AO1.2)	DO NOT ALLOW 84 ALLOW ECF from incorrect RFM of MgCO ₃ eg RFM of 84, number of moles = 298 ALLOW ECF for sig fig mark
			Total	3	
13	а	i	$Zn + 2HC/ \rightarrow ZnC/_2 + H_2$ Reactants \checkmark Balancing \checkmark	2 (AO2.2)	ALLOW any correct multiple, including fractions ALLOW = OR ⇒ instead of → DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but

					ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae eg Zn + $2HCL \rightarrow ZNC/_2 + H_2$
		ii	Exothermic √	1 (AO1.1)	
	b		Energy required to start the reaction / energy required for a successful collision to occur / AW √	1 (AO1.1)	IGNORE energy needed to activate the reaction / amount of energy for the reaction to take place
			Total	4	
14			$N_2 + 3H_2 \Rightarrow 2NH_3$ Formulae √ Balancing √	2(AO 2.2)	ALLOW any correct multiple, including fractions DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but ALLOW = / → instead of \rightleftharpoons ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae eg N ₂ + 3H ₂ \rightleftharpoons 2Nh ₃ Examiner's Comments Most candidates were able to write the correct balanced symbol equation for the reaction of nitrogen with hydrogen. One mark was given for the correct reactants and products and one mark for the correct balancing. The balancing mark was dependent on the correct formulae, but one mark was allowed for a balanced equation with minor errors in subscripts or formulae. For example, N ₂ + 3H2 \rightleftharpoons 2Nh ₃ , would gain one mark. When candidates did not gain marks, it was often because they wrote 6H as a reactant, rather than 3H ₂ . AfL Although it was not penalised in this question, candidates should be taught to use the \rightleftharpoons symbol for a reversible reaction, rather than an →.
			Total	2	
15			Mg + 2HCl → MgCl ₂ + H ₂ Formulae \checkmark Balancing \checkmark	2(AO 2 × 2.2)	ALLOW any correct multiple, including fractions ALLOW = / ≓ instead of → DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but

				ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae eg Mg + 2HCL \rightarrow Mgc/ ₂ + H2 IGNORE state symbols Examiner's Comments As in Question 18(a), one mark was given for the correct reactants and products and one mark for the correct balancing. The balancing mark was dependent on the correct formulae, but one mark was allowed for a balanced equation with minor errors in subscripts or formulae. When candidates did not gain marks, it was usually because they wrote MgC/ as the formula of magnesium chloride. 2H, rather than H ₂ , as the other product was also a common error.
		Total	2	
16	i	$3Pb + 8HNO_3 \rightarrow 3Pb(NO_3)_2 + 2NO + 4H_2O$ Formulae √ Balancing √	2 (AO1.1) (AO2.2)	ALLOW any correct multiple, including fractions ALLOW = / \rightleftharpoons instead of \rightarrow DO NOT ALLOW and / & instead of '+' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae e.g. 3PB + 8HNO ₃ \rightarrow 3Pb(NO ₃) ₂ + 4H ₂ O <u>Examiner's Comments</u> Higher ability candidates were able to write the correct balanced symbol equation for the reaction of lead with nitric acid. One mark was given for the correct reactants and products and 1 mark for the correct balancing. The balancing mark was dependent on the correct formulae, but 1 mark was allowed for a balanced equation with a minor error in subscripts or formulae. Most candidates gained 1 mark for the correct reactants and products but were unable to correctly balance the equation.
	ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.10 award 4 marks M _r of Pb(NO ₃) ₂ = 331.2 or	4 (AO3 × 2.2)	ALLOW 331
		207g of Pb would produce 331.2g of Pb(NO ₃) ₂ / 20.7g of Pb would produce 33.12g of Pb(NO ₃) ₂ √		ALLOW ECF from balanced equation in (i) ALLOW 3 marks for 0.1 (ie not 2 sig figs)

		Moles = mass \div Mr / 33.1 \div 331.2 \checkmark = 0.09993961 \checkmark = 0.10 (2 sig. figs) \checkmark OR Ratio of Pb : Pb(NO ₃) ₂ is 3:3 / 1:1 \checkmark RAM of Pb is 207 or 207.2 \checkmark (so) 20.7g of Pb is 0.10 mol or 0.099903474 \checkmark (and so) this will make 0.10 mol of Pb(NO ₃) ₂ \checkmark	(AO1.2)	ALLOW ECF from incorrect calculation for sig fig mark ALLOW ECF from balanced equation in (i) ALLOW ECF for calculation of mol of Pb from incorrect RAM Examiner's Comments Higher ability candidates scored 4 marks on this question. 'Error carried forward' was allowed from the candidate's symbol equation in part (i). It is worth centres stressing to candidates that if they are asked to give their answer to a specific number of significant figures, they can only gain full marks by doing so. Exemplar 5 $N_r = 0.019mol$ $N_{obte of lead nitrate = 0.009.mod$ Mote of lead nitrate = 0.009.mod Mote of lead nitrate = 0.009.mod Mote of lead nitrate a clearly set out calculation response, which is easy for the examiner to follow. When candidates write numbers at random in the answer space it is
				numbers at random in the answer space it is difficult for the examiner to seek out credit- worthy points and / or give marks for errors carried forward.
		Total	6	
17	а	Mean titre = 17.1 (1) Because titration 1 is a rough estimate / titration 1 is an outlier / titrations 2 and 3 are identical (1)	2	IGNORE anything in the titration table
	b	Moles of acid = 0.00171 (1) Concentration of KOH = 0.0684 (1)	2	ALLOW ECF from incorrect titre / 0.100 × titre ×10 ⁻³ ALLOW ECF from incorrect moles providing answer is to 3 sig figs / moles÷volume

					ALLOW correct answer without working
	с		$M_{\rm r}$ of KOH = 56.1 (1) Concentration of KOH = 3.84 (1)	2	ALLOW 3.837
					ALLOW ECF from incorrect M_r and / or incorrect concentration from (b) / $M_r \times \text{conc}$
			Total	6	
18		i	Same number of electrons in outer shell /	1	ALLOW outer electrons or valence electrons rather than electrons in the outer shell ALLOW valence shell rather than outer shell
			all have 7 electrons in outer shell (1)		DO NOT ALLOW the wrong number of electrons in the outer shell
			2Na + Br₂ → 2NaBr		ALLOW any correct multiple of the equation including fractions
			Correct formulae of reactants and products (1)		ALLOW = or \Rightarrow instead of \rightarrow
		ii		2	DO NOT ALLOW and or & instead of +
			Balancing – depend on correct formulae (1)		ALLOW one mark for correct balanced equation with minor errors of case and subscript, e.g. $2NA + Br2 \rightarrow 2NaBr$
		iii	KAt (1)	1	
			Total	4	
19			Ca + 2HC $l \rightarrow$ CaC l_2 + H ₂	2	1 mark for both correct reactants 1 mark for both correct products
			Total	2	
20			24.3 / 6.022 × 10 ²³ (1) 4.04 × 10 ⁻²³ (1)	2	1 mark for 4.03520425 × 10 ^{−23} or correctly rounded up but not to 3 sig. fig.
			Total	2	
21			ZnO + 2HNO ₃ → Zn(NO ₃) ₂ + H ₂ O correct formulae (1) balancing (1)	2	balancing mark is conditional on correct formulae ALLOW any correct multiple e.g. $2ZnO + 4HNO_3 \rightarrow 2Zn(NO_3)_2 + 2H_2O$ (2) ALLOW = or \triangle or \Rightarrow for arrow DO NOT ALLOW 'and' or & for + ALLOW one mark for correct balanced equation with minor errors in case, subscript and superscript e.g. $ZnO + 2HNO_3^2 \rightarrow Zn(Noc)_2 + H_2$
			Total	2	$c.g. \sum_{i=0}^{i=1} i \sum_{j=1}^{i=1} i \sum_{j=1}$

22	а	i	no of moles of X = 0.2 (1) no of moles of oxygen = 0.1 (1) no of moles of X oxide = 0.2 (1)	3	
		ii	2X + $O_2 \rightarrow 2XO$ (2) formulae (1) balancing (1)	2	balancing is conditional on correct formulae ALLOW ecf from calculations of numbers of moles
	b		16.9 (g) scores (3) but if answer incorrect then RFM of NaOH = 40.0 and RFM of Na ₂ SO ₄ = 142.1 (1) idea that 2 moles of NaOH react to produce 1 mole of Na ₂ SO ₄ (1)	3	ALLOW 16.89 (2) ALLOW ecf from incorrect RFMs
			Total	6	
23			с	1	
			Total	1	
24			с	1	
			Total	1	