Mark scheme - Introducing Chemical Reactions (H)

Question			Answer/Indicative content	Marks	Guidance
1			B \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
			Total	1	
2			D \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	
			Total	1	
3			B \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	
			Total	1	
4			D \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
			Total	1	
5			B \checkmark	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	
			Total	1	
6			D \checkmark	1(AO2.2)	
			Total	1	
7			C $\sqrt{ }$	1(AO2.2)	Examiner's Comments Misconception B was a very common misconception in this question, when candidates calculated the number of oxygen molecules rather than the number of oxygen atoms.
			Total	1	
8	a	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.00125 / 1.25 \times 10^{-3}$ award 2 marks $\begin{aligned} & \text { Moles }=\frac{\text { volume }}{24} / \frac{0.030}{24} / 24,000 \\ & =0.00125 / 1.25 \times 10^{-3} \checkmark \end{aligned}$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW 1 mark only for $30 \div 24$ or $0.030 \div$ 24,000 , correctly calculated
		ii	$0.0025 / 2.5 \times 10^{-3}(\mathrm{~g}) \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.2) \end{gathered}$	unit not needed ALLOW ECF from (i) ie $2 x$ answer from (i)
	b		Moles of chromium $=\frac{10.40}{52.0}=0.2 \mathrm{~V}$	$\begin{gathered} 3 \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW other methods of calculation

			Moles of nickel $=\frac{17.61}{58.7}=0.3 \checkmark$ Idea that ratio is $2: 3$ / ratio isn't $1: 1$ so equation $2 \checkmark$		eg 10.40 g of chromium forms $\frac{10.40}{520} \times 58.7$ $\begin{aligned} &=11.74 \mathrm{~g} \text { nickel } \\ & \frac{11.74}{3} \times 2=17.61 \mathrm{~g} \\ & \text { of nickel } \end{aligned}$ So, equation 2 ALLOW answers that show equation 1 is not correct Third marking point is dependent on correct mathematical reasoning
			Total	6	
9			$2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}+\mathrm{H}_{2}$ Formulae \checkmark Balancing \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 1.1) \\ (\mathrm{AO} 2.1) \end{gathered}$	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae eg $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaoH}+\mathrm{H}_{2}$
			Total	2	
10		i	$\mathrm{Na}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathbf{2 N a O H}(\mathrm{aq})$ Formulae \checkmark Balancing \checkmark State symbols $\sqrt{ }$	$\begin{gathered} 3 \\ (\mathrm{AO} 2.1) \\ (\mathrm{AO} 1.2) \\ (\mathrm{AO} 2.1) \end{gathered}$	ALLOW any correct multiple, including fractions ALLOW $=\mathbf{O R} \rightleftharpoons$ instead of \rightarrow DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae $\text { e.g. } \mathrm{NAO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2 N a O H}$ State symbols mark is independent of formulae \& balancing marks
		ii	Hydroxide / OH- ions)	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
		iii	Sodium sulfate $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 2.1) \end{gathered}$	ALLOW $\mathrm{Na}_{2} \mathrm{SO}_{4}$ IGNORE incorrect formulae if correct name is given
		iv	FIRST CHECK ANSWER ON ANSWER LINE If answer = 100 award $\mathbf{2}$ marks pH increased by 2 concentration decreases by a factor of $10 \times 10 \checkmark$ $100 \checkmark$	$\begin{gathered} 2 \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW for 1 mark pH increase by 1 , so concentration decreased by a factor of 10
			Total	7	
11	a	i	x - axis: mass of copper carbonate (g) AND y-axis: mass of copper oxide $(\mathrm{g}) \downarrow$	$\begin{gathered} 4 \\ (\mathrm{AO} 4 \times \\ 2.2) \end{gathered}$	ALLOW correct formulae, ie CuCO_{3} and CuO ALLOW just copper carbonate (g) AND

			Appropriate scale \checkmark All points plotted correctly Line of best fit through the points \checkmark	(AO1.2)	copper oxide(g) ALLOW $\pm 1 / 2$ square ALLOW line that starts at $(1,0.7)$ and does not go through $(0,0)$ ALLOW correctly drawn line of best fit through incorrectly drawn points; this may be a curve
		ii	$3.8(0)(\mathrm{g}) \checkmark$	$\begin{gathered} 1 \\ (\mathrm{AO} 3.1 \mathrm{a}) \end{gathered}$	ALLOW $\pm 1 / 2$ square ALLOW ECF from graph
		iii	Idea that carbon dioxide (gas) escapes \checkmark	$\begin{gathered} 1 \\ \text { AO3.2b) } \end{gathered}$	ALLOW idea that a gas is produced / escapes, but DO NOT ALLOW incorrectly named gas
	b		FIRST CHECK ANSWER ON ANSWER LINE If answer = $\mathbf{3 7 3}$ (tonnes) award 4 marks $\begin{aligned} & M_{\mathrm{r}} \mathrm{CaCO}_{3}=100.1 \text { and } M_{\mathrm{r}} \mathrm{CaO}=56.1 \checkmark \\ & 209 \mathrm{~g} \text { of calcium oxide }=\frac{100.1}{56.1} \times 209 \\ & =372.9215686(\mathrm{~g}) \checkmark \\ & =373(\mathrm{~g})(3 \text { significant figures }) \checkmark \end{aligned}$	$\begin{gathered} 4 \\ \\ \\ (\mathrm{AO} 3 \times \\ 2.2) \\ (\mathrm{AO} 1.2) \end{gathered}$	Need both relative formula masses for 1 mark DO NOT ALLOW 100 or 56 ALLOW ECF from incorrect RFMs ALLOW ECF ALLOW ECF for sig fig mark
			Total	10	
12			FIRST CHECK ANSWER ON ANSWER LINE If answer = 297 award 3 marks Relative formula mass of $\mathrm{MgCO}_{3}=24.3+$ $\begin{aligned} 12+ & 16 \times 3 \\ = & 84.3 \end{aligned}$ Number of moles $=25 \times \frac{1000}{84.3}=296.5599051$ $=297 \checkmark \text { (to } 3 \text { sig fig })$	$\begin{gathered} 3 \\ (\mathrm{AO} 2.2 \times \\ 2) \\ (\mathrm{AO} 1.2) \end{gathered}$	DO NOT ALLOW 84 ALLOW ECF from incorrect RFM of MgCO_{3} eg RFM of 84, number of moles $=298$ ALLOW ECF for sig fig mark
			Total	3	
13	a	i	$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$ Reactants \checkmark Balancing \checkmark	$\begin{gathered} 2 \\ (\mathrm{AO} 2.2) \end{gathered}$	ALLOW any correct multiple, including fractions ALLOW $=\mathbf{O R} \rightleftharpoons$ instead of \rightarrow DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but

				ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae $\mathrm{eg} \mathrm{Zn}+2 \mathrm{HCL} \rightarrow \mathrm{ZNC}_{2}+\mathrm{H}_{2}$
	ii	Exothermic $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	
	b	Energy required to start the reaction / energy required for a successful collision to occur / AW $\sqrt{ }$	$\begin{gathered} 1 \\ (\mathrm{AO} 1.1) \end{gathered}$	IGNORE energy needed to activate the reaction / amount of energy for the reaction to take place
		Total	4	
14		$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$ Formulae \checkmark Balancing \checkmark	2(AO 2.2)	ALLOW any correct multiple, including fractions DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but ALLOW $=/ \rightarrow$ instead of \rightleftharpoons ALLOW 1 mark for a balanced equation with a minor error in subscripts / formulae $\mathrm{eg} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{Nh}_{3}$ Examiner's Comments Most candidates were able to write the correct balanced symbol equation for the reaction of nitrogen with hydrogen. One mark was given for the correct reactants and products and one mark for the correct balancing. The balancing mark was dependent on the correct formulae, but one mark was allowed for a balanced equation with minor errors in subscripts or formulae. For example, $\mathrm{N}_{2}+3 \mathrm{H} 2 \rightleftharpoons 2 \mathrm{Nh}_{3}$, would gain one mark. When candidates did not gain marks, it was often because they wrote 6 H as a reactant, rather than $3 \mathrm{H}_{2}$. AfL Although it was not penalised in this question, candidates should be taught to use the \rightleftharpoons symbol for a reversible reaction, rather than an \rightarrow.
		Total	2	
15		$\begin{aligned} & \mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2} \\ & \text { Formulae } \checkmark \\ & \text { Balancing } \checkmark \end{aligned}$	$\begin{gathered} 2(\mathrm{AO} 2 \times \\ 2.2) \end{gathered}$	ALLOW any correct multiple, including fractions ALLOW $=/ \rightleftharpoons$ instead of \rightarrow DO NOT ALLOW and / \& instead of ' + ' balancing mark is dependent on the correct formulae but

			$\begin{aligned} & \text { Moles }=\text { mass } \div \mathrm{M}_{\mathrm{r}} / 33.1 \div 331.2 \checkmark \\ & =0.09993961 \checkmark \\ & =0.10(2 \text { sig. figs }) \checkmark \end{aligned}$ OR Ratio of $\mathrm{Pb}: \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is $3: 3 / 1: 1 \checkmark$ RAM of Pb is 207 or $207.2 \checkmark$ (so) 20.7 g of Pb is 0.10 mol or 0.099903474 \checkmark (and so) this will make 0.10 mol of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ \checkmark	(AO1.2)	ALLOW ECF from incorrect calculation for sig fig mark ALLOW ECF from balanced equation in (i) ALLOW ECF for calculation of mol of Pb from incorrect RAM Examiner's Comments Higher ability candidates scored 4 marks on this question. 'Error carried forward' was allowed from the candidate's symbol equation in part (i). It is worth centres stressing to candidates that if they are asked to give their answer to a specific number of significant figures, they can only gain full marks by doing so. Exemplar 5 m_{r} of land $=207.2$ $\begin{aligned} & \frac{20.7}{207.2}=0.099 \ldots \mathrm{mt} \\ & \text { mole of heocl }=\text { moles of baod witrate }=3=0.0999 \mathrm{~mol} \\ & \\ & \text { moles of teas nitrate }=0.9999: 0.10 \end{aligned}$ This response illustrates a clearly set out calculation response, which is easy for the examiner to follow. When candidates write numbers at random in the answer space it is difficult for the examiner to seek out creditworthy points and / or give marks for errors carried forward.
			Total	6	
17	a		$\text { Mean titre }=17.1(1)$ Because titration 1 is a rough estimate / titration 1 is an outlier / titrations 2 and 3 are identical (1)	2	IGNORE anything in the titration table
	b		Moles of acid $=0.00171$ (1) Concentration of $\mathrm{KOH}=0.0684$ (1)	2	ALLOW ECF from incorrect titre $/ 0.100 \times$ titre $\times 10^{-3}$ ALLOW ECF from incorrect moles providing answer is to 3 sig figs / moles \div volume

c					

22	a	i	$\begin{aligned} & \text { no of moles of } X=0.2(1) \\ & \text { no of moles of oxygen }=0.1(1) \\ & \text { no of moles of } X \text { oxide }=0.2(1) \end{aligned}$	3	
		ii	$\begin{aligned} & 2 \mathrm{X}+\mathrm{O}_{2} \rightarrow 2 \mathrm{XO}(2) \\ & \text { formulae (1) } \\ & \text { balancing (1) } \end{aligned}$	2	balancing is conditional on correct formulae ALLOW ecf from calculations of numbers of moles
	b		16.9 (g) scores (3) but if answer incorrect then RFM of $\mathrm{NaOH}=40.0$ and RFM of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ $=142.1$ (1) idea that 2 moles of NaOH react to produce 1 mole of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (1)	3	ALLOW 16.89 (2) ALLOW ecf from incorrect RFMs
			Total	6	
23			C	1	
			Total	1	
24			C	1	
			Total	1	

